SSC22-WKIV-03

Machine Learning Image Processing Algorithms Onboard OPS-SAT

Shreeyam Kacker, Alex Meredith, Kerri Cahoy
Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge MA 02139; +1-617-253-7805
shreeyam@mit.edu

Georges Labreche
Tanagra Space
Queens, NY; +1-919-912-9136
georges@tanagraspace.com

ABSTRACT

We discuss the deployment of image processing algorithms developed for BeaverCube-2, a project under
development between the MIT Space Telecommunications, Astronomy, Radiation (STAR) Lab and
the Northrop Grumman Corporation. The algorithms were uploaded to and executed on OPS-SAT,
a 3U CubeSat owned and operated by ESA with a processing payload that allows rapid prototyping,
testing, and validation of software and firmware experiments in space at no cost to the experimenter.
Testing these algorithms onboard OPS-SAT significantly reduces risk for future on-orbit image processing
missions such as BeaverCube-2. We focus on four image processing algorithms used for cloud detection:
a luminosity-thresholding method, a random forest method, an U-Net based deep learning method — all
developed by STAR Lab for BeaverCube-2 — and a k-means clustering deep learning method implemented
by the OPS-SAT Flight Control Team (FCT). We evaluate each method in terms of in terms of overall
accuracy, power draw, and temperature rise on-orbit, and discuss the challenges of implementing these

methods on embedded hardware and the lessons learned for BeaverCube-2.

INTRODUCTION

Improvements using machine learning for image
processing have the potential to enable more
autonomy for applications where communications
latency is a challenge. Identifying and discarding
undesirable images on-orbit allows satellite op-
erators to downlink only high quality images of
a target region, saving time and resources such
as power, bandwidth, and operator effort. In
this work, we explore the problem of on-orbit
cloud segmentation with limited computational re-
sources on the BeaverCube-2 and OPS-SAT missions.

BeaverCube-2 is a mission jointly developed
by the MIT Space Telecommunications, Astronomy,
and Radiation (STAR) Lab and the Northrop
Grumman Corporation which aims to demonstrate
the use of an Artificial Intelligence (AI) Computa-
tional Accelerator System-on-a-Chip (SoC) on a 3U
CubeSat in Low-Earth Orbit (LEO). BeaverCube-2
will leverage this Al accelerator to perform on-orbit
image processing to identify clouds and ocean

fronts around the Cape Hatteras region of North
Carolina*2  The concept of operations for the
mission is shown in Figure[l] Previous work has been
conducted on producing a computer vision pipeline
for this task, specifically on the cloud segmentation®
and front identification models. The BeaverCube-2
computer vision pipeline is shown in Figure
However, deploying software that has only been
tested using ground-based computing and imaging
is a risk. It is desirable to test novel algorithms in
a flight-like environment before deploying them for
use.

OPS-SAT is a 3U CubeSat launched on December
18, 2019; it is the first nanosatellite to be directly
owned and operated by the European Space Agency
(ESA). OPS-SAT is operated by the flight control
team (FCT) at ESOC in Darmstadt, Germany,
primarily using the Special Mission Infrastructure
Lab Environment (SMILE) ground station. OPS-
SAT features the Satellite Experimental Processing
Platform (SEPP), an onboard computer that runs
experiments from collaborators across the globe,
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Figure 1: BeaverCube-2 concept of operations.2
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Figure 2: BeaverCube-2 image processing
pipeline.

which can be used to de-risk flight software onboard
a flying mission® The SEPP has an Intel Cyclone V
FPGA with a dual-core ARM Cortex-A9 running at
800 MHz, running a customized distribution of Yocto
linux. The SEPP is much more performant than
conventional space flight hardware — with sufficient
onboard memory to carry out advanced software
and hardware experiments®567 _ which enables
the use of modern image processing algorithms.
Software for experiments is uplinked to OPS-SAT
from the ground station.

One notable experiment running onboard OPS-SAT
is SmartCam, an app that allows autonomous
scheduling and image processing and includes
a k-means algorithm for image clustering® We
integrated our experiment running on-orbit cloud
segmentation algorithms designed for BeaverCube-2
with SmartCam, which allows us to leverage
SmartCam’s image pre-processing pipeline and
to easily evaluate our algorithms against ESA’s
in-house implementation of k-means clustering
for on-orbit cloud segmentation. Validating our
cloud segmentation algorithms on-orbit using
OPS-SAT helps us understand the challenges of
image processing in an on-orbit environment and
reduces risk for BeaverCube-2.

BACKGROUND

State-of-the-art cloud segmentation algorithms in-
clude rule-based methods like Fmask? s2cloudless 10
and the random forest and Bayesian thresholding
algorithms used onboard the Earth Observing-1 (EO-
1) mission, M as well as deep learning algorithms like
convolutional neural networks (CNNs) 12 This work
explores the implementation and on-orbit deployment
of three rule-based cloud segmentation algorithms:
luminosity thresholding, random forest segmentation,
and k-means segmentation, as well as one deep learn-
ing algorithm — a U-Net.

Cloud Segmentation

Many state-of-the-art algorithms for generating cloud
masks from satellite data are rule-based and these
methods often require input data beyond RGB im-
agery. Two of the most popular schemes, Fmask?
and s2cloudless™@ used on Landsat and Sentinel-2
imagery respectively, sample from bands across the
electromagnetic spectrum. Fmask uses several hand-
selected thresholds to identify cloud pixels, and addi-
tionally distinguishes between land and water when
identifying clouds® Fmask uses 7 different Landsat
bands, including a short-wave infrared (SWIR) “cir-
rus” band and a thermal infrared (TTRS) band 3
Similarly, s2cloudless uses all of Sentinel-2’s bands
except bands 3, 6, and 7, and uses gradient-boosted
random forests trained on raw data, pairwise differ-
ences between bands, pairwise ratios between bands,
and averages over different bands™0
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Another state-of-the-art mask, the continuity
MODIS-VIIRS cloud mask, uses rules similar to
those used for Fmask to generate cloud masks
based on data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the
Visible Infrared Imaging Radiometer Suite (VI-
IRS)™ The continuity MODIS-VIIRS cloud
mask depends on multispectral input, and uses a
SWIR band to detect cirrus clouds and long-wave
infrared (LWIR) bands for thermal cloud detection.'#

Rule-based cloud segmentation methods have
been tested on orbit before — EO-1 flew Bayesian
thresholding and random decision forest models
for on-orbit cloud detection. The EO-1 Bayesian
thresholding model classified pixels individually
based on their luminosity in two visible-spectrum
bands and one infrared band, and the random deci-
sion forest classified pixels based on the luminosity
of pixels in a 5 x 5 kernel surrounding the pixel
of interest in three different visible-spectrum bands ™

Rule-based methods tend to have poor speci-
ficity and often misidentify bright ground pixels
(especially snow) as clouds®1Y  Kacker et al.
demonstrated instances of Fmask misidentifying
snow, coastlines, and bright rooftops of buildings as
clouds? Notably, many cloud masks generated with
rule-based methods are considerably less accurate
near the poles, likely because land near the poles
tends to have a low surface temperature and is often
covered in snow

Deep learning has been used for segmenting
clouds in satellite imagery on the ground/21° and
convolutional neural networks (CNNs) in particular
have shown promise for improving upon rule-based
methods. Unsupervised k-means clustering has been
used for image clustering onboard OPS-SAT 18 and
the resulting clusters often group images based on
cloudiness. CNNs have also been used for cloud
detection on OPS-SAT, but the models classified
28 x 28 patches as cloud or noncloud rather than
classifying individual pixels, and perform with all
F-scores under 0.75, possibly because these models
were trained on an extremely small dataset of
OPS-SAT imagery*? There is a gap in the literature
regarding performant on-orbit cloud detection with
deep learning. This paper seeks to extend prior work
on cloud segmentation of satellite imagery on the
ground by using deep learning to perform efficiently
and accurately on orbit.

Space Considerations

For space hardware, it is generally desirable to have
low size, weight, and power (SWaP). Sometimes
this concept is extended to cost as well (SWaP-C).
Real-time software has similarly desirable traits with
analogs to the software world. In general, it is prefer-
able for our segmentation algorithm to use minimal
computational resources and power and still be fast
to execute, while also maintaining a small binary size
in order to be able to uplink the software. In practice,
achieving all of these goals at once is often difficult,
and in our experimentation we find that methods
often will excel at all metrics except one.

Additionally, on-orbit pointing capability must be
considered in order to match the training dataset to
the model inputs. We developed our dataset with
nadir-pointing images, hence it is important to avoid
samples taken off-nadir, as this would not necessarily
be a fair comparison and is a considerably more diffi-
cult problem, outside the scope of this work 17

APPROACH

Our algorithms run onboard OPS-SAT as part of
the SmartCam® app; as such, when OPS-SAT enters
specific geographic regions, SmartCam commands
the spacecraft to take an image. After SmartCam
crops the image, discards blurry images, and white-
balances the image, our luminosity thresholding, ran-
dom forest, U-Net, and k-means segmentation algo-
rithms each segment the image and generate a cloud
mask for downlink. The computer vision pipeline is
detailed in Figure [3]

Image capture,

classification Dataset matching Segmentation
SmartCam > White L5 Segmentation L > Output
Balance Methods

|

Discard "edge", "bad"
labeled images

White balanced
image

Figure 3: Computer vision pipeline for the
OPS-SAT experiment 216

SmartCam

Prior to segmentation, the SmartCam app resizes
images taken by OPS-SAT from their native size
(2048 x 1944) to 614 x 583 thumbnails. After resizing,
SmartCam uses a CNN to distinguish between im-
ages of Earth, images of the Earth limb, and blurry
“bad” images. It then discards “bad” images and

Kacker

36t" Annual ATAA/USU
Conference on Small Satellites



— e

B = ~

(a) Raw. (b) White-balanced.

Figure 4: Comparison of raw and white-
balanced images from OPS-SAT onboard cam-
era. Credit: ESA.

images of the Earth limb. This form of pre-filtering
helps make sure that no additional processing power
is spent on attempting to segment images that are
not useful in the first place. Additionally, discarding
images of Earth’s limb avoids issues with attempting
to segment clouds off-nadir. The SmartCam can run
multiple image classification models or third party
executable binaries in a branchable sequence to sup-
port hyper-specialized applications of ML algorithms
across an image processing pipelinel8 The cloud
detection algorithms developed for this experiment
were “plugged-in” the SmartCam’s image processing
pipeline; demonstrating a novel application of soft-
ware re-use that builds on top of another software
application onboard the same flying platform. The
complex challenges of cloud detection is thus decom-
posed into “openable” image segmentation subprob-
lems by means of crowdsourcing into the SmartCam’s
pipeline.

Pre-processing

Before any segmentation, images are white balanced.
White balancing is necessary to match the color dis-
tribution of the inputs to the color distribution of
images in the training set, to improve performance.
Images taken by OPS-SAT are significantly blue-
shifted compared to conventional cameras. We reim-
plemented the white balancing algorithm used by
the GNU Image Manipulation Program (GIMP) for
use on OPS-SAT. The algorithm works very simply
by stretching the 0.05'" and 99.95'" percentiles of
histograms to the full range!® We chose this algo-
rithm over alternate white balancing algorithms as it
is simple to implement, performs well, and does not
require human intervention to pick out any neutral
features in an image.

Luminosity Thresholding

Luminosity thresholding, also known as Bayesian
thresholding, is a simple method that classifies a pixel
as cloud or non-cloud based on its luminosity in the
red, green, and blue channels™' If a pixel is brighter
than the channel threshold in all three channels, it is
classified as a cloud; otherwise, it is classified as non-
cloud. Luminosity thresholding is computationally
efficient but is generally less accurate than more
complex methods, and has flight heritage on EO-
1 Luminosity thresholding is equivalent to a 3-tree

3 trees

depth 2

Votes summed from each tree

Figure 5: Luminosity thresholding architec-
ture showing R, G, B, trees voting based on
thresholds in 3-tree random forest.

random forest with trees of depth 2, as shown in
Figure[5l All trees must vote unanimously in order
to classify a pixel as a cloud.

Random Forest

The Earth Observing 1 (EO-1) spacecraft uses a
random forest to detect clouds on orbit, and extracts
features from a 5 x 5 kernel surrounding each pixel of
interest. ™! We used the same approach in this work.
As shown in Figure [6] we implement a kernel-based
random forest, where each pixel is classified based
on the red, green, and blue luminosities of the 3 x 3
window centered on the pixel being classified. We
chose a 3 x 3 kernel over a 5 x 5 kernel because using
a smaller window size reduces the computational
complexity of the random forest algorithm, but the
3 x 3 kernel still preserves key features for pixel
classification.

Our random forest model chose splits based
on maximizing the decrease in Gini impurity, given
in Equation [I]2¥ In this equation, p(x) represents
the probability that x is a cloud pixel for x randomly
selected from all pixels that reach a node N in a
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random tree.

= p(x)(1 - p(z)) (1)

Our random forest model had 10 trees, with a tree
maximum depth of 18. We selected the tree maxi-
mum depth to be smaller than the number of features
(27, representing the red, green, and blue luminosities
of each of the 9 pixels in a 3 x 3 kernel) in order to
avoid overfitting? Our random forest architecture
is shown in Figure [6]

Flatten (kax3 ) features

| I]]]]II]]]]]]]II]]II]]]]]]

_]

:.; n'tre:as : ':

0000000000000
Votes summed from each tree

depth d

(k, k, 3) kernel
RGB

Figure 6: Random forest architecture, show-
ing classification of a single pixel using a k x k
kernel and a forest of n trees of depth d.

U-Net

Our U-Net is based on a conventional U-Net with no
additional alterations, as shown in Figure [/} Focal
loss — otherwise known as focal cross entropy (FCE)
— is used to train our U-Net, which improves upon
log loss for classifying difficult samples in a dataset 2L
Focal loss works by weighting samples based on how
much of a particular classification class is present.
Focal loss for the case of binary classification labels
is given by Equation

FCE = —a(1 — p)"ylog(p) (2)
+ (1= a)p”(1 —y)log(1l - p)

where y is the ground truth, p is the predicted class
probability, v is the focal parameter, and a is a
weighting parameter. Higher values of v increase the
proportion of loss given to difficult samples. y and p
are both bounded in the interval [0, 1] in this binary
classification problem.

Samples in our dataset with few clouds or mostly
clouds in this case are weighted more heavily than

samples with an even mix of cloud and non-cloud
pixels, resulting in a model which is better tuned to
accurately classify images that are mostly clouds or
have only a few cloud pixels. When validating on
the original dataset and comparing mean squared
error (MSE) and focal loss, MSE struggles greatly
on samples that are fully covered in cloud. The
output appears to “zone out” and classifies cloud
correctly on the edges, but classifies cloud-covered
areas in the center as clear. In contrast, focal loss
does a much better job in samples that are covered in
clouds. While the overall accuracy does not increase
significantly between MSE or FCE, prioritizing the
accuracy in samples with full cloud cover is much
more useful for the mission.
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Figure 7: U-Net based architecture overview?

K-Means Segmentation

The k-means segmentation model implemented by
the OPS-SAT FCT is a generic approach. It reads
in all pixels of an image and clusters them using
Lloyd’s algorithm 22 It uses kmeans++ for initializa-
tion, which speeds up the clustering process while
improving its accuracy. After clustering pixels within
an image, the pixels are assigned a color for the clus-
ter they belong to and then written as a new image
file that serves as the visual output of the k-means
image segmentation. Supported k-values range from
2 to 11 with k = 2 for cloud detection. A k limit of
11 was determined through experiment validation on
the engineering model (EM) with respect to memory
constraints. Predefined color palettes can be selected
via a configuration file or a random palette can be
generated on the fly. Figure 8] demonstrates k-means
image segmentation onboard the EM using a familiar
subject. Figure [9] showcases examples of on-orbit
k-means image segmentation results when k£ > 2 to
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demonstrate feature extraction and novelty detec-
tion capabilities beyond just cloud detection. Cloud
thickness classification as well as coastline novelty
detection are of particular interest in Figures [9a] and
respectively. Figures and show
how cloud detection can be configured with k = 2
coupled with a black and white palette configura-
tion to generate a cloud mask as the color-coded
segmented image. A ratio is calculated for the white
pixel count, representing clouds, over the image’s
total pixel count. This ratio directly translates to
a cloud coverage percentage which is used to filter
against thresholds that group the acquired images
into buckets of cloudiness. The FCT can then au-
tomate which images to downlink based on cloud
coverage thus delegating decision-making to in-space
autonomous operations.

L~ .
(a) Before segmentation. (b) After segmentation.

Figure 8: Picture of flight control team mem-
ber Vladimir during k-means validation on
the EM (k =5 with the Set3 palette).

IMPLEMENTATION

The implemented algorithms were driven by OPS-
SAT’s recommended 10 MB uplink limit and the
libraries available on the SEPP. We were able to use
Tensorflow Lite to deploy our U-Net model, but our
other models were implemented in C++ and cross-
compiled to run on the SEPP.

Luminosity Thresholding

We implemented luminosity thresholding ourselves
in C++. Because luminosity thresholding is computa-
tionally simple and requires only enough memory to
load an image for segmentation, it was straightfor-
ward to port luminosity thresholding algorithms to
work on embedded hardware.

b et

(a) Cumulus clouds

4

(c) Clear skies with coastline (k = 10, t = 0m18.29s)

Figure 9: On-orbit k-means image segmenta-
tion results with £ > 2 and randomly gener-
ated color palettes for cumulus clouds, stratos
clouds, and clear skies with coastline. The ¢
variable is the execution time of the k-means
algorithm to segment the acquired images in
memory and write the result as a new image
file. Credit: ESA.

Random Forest

We used the open-source Ranger library, imple-
mented in C++, to train our random forest model 23
Ranger is designed to operate on textual data and is
not designed for embedded hardware, so we modified
the Ranger library to train on images and generate
cloud masks.

Random forest models trained with Ranger
cannot be easily transferred between computers with
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different instruction sets, so we trained our random
forest model on a Raspberry Pi in order to match
the ARM32 environment of OPS-SAT’s SEPP. We
trained our random forest model on only a subset
of our Landsat dataset containing 5 images from
each category because of the computational and
memory constraints posed by training on embedded
hardware 2

OPS-SAT’s recommended 10 MB uplink limit
drove us to make disk footprint-saving architectural
decisions when implementing our random forest
model. We implemented a new memory-saving mode
to persist Ranger model files, representing training
data as integers, in order to reduce the size of our
random forest model. We also reduced the number
of trees in our random forest from 25 trees to 10
trees in order to shrink the resulting random forest
model.

The final Ranger binary used in this work is
4.9 MB and the final random forest model is 12 MB.
Although the final random forest model is larger
than 10 MB, compressing our models before uplink
allows us to satisfy the recommended uplink size
requirements.

U-Net

The U-Net model is initially trained on TensorFlow
and converted to a TensorFlow Lite (tflite) model
using fully integer optimizations. The final size of the
tflite model is 3.3 MB. The tflite inferencer provided
executes the model on-orbit, which adds approxi-
mately another 3 MB to the file size.

As the tflite model cannot take variable size inputs,
the input image is split up into separate patches and
fed into the model sequentially.

K-Means Segmentation

We relied upon the version of k-means segmentation
implemented by the OPS-SAT FCT, which is im-
plemented in C++ using the dkm k-means clustering
library1¥ Because k-means segmentation was already
implemented by the OPS-SAT FCT and installed on
OPS-SAT, the size of the k-means segmentation bi-
naries did not contribute to the size of our uplinked
experiment.

RESULTS

A radiation induced anomaly which corrupted OPS-
SAT’s filesystem resulted in a delay in deploying our

random forest model and we were unable to run the
latter on-orbit. Instead, we took the images that
our other three models segmented onboard OPS-
SAT and processed them with our random forest
model on the OPS-SAT engineering model, which
has identical hardware to the flight model. We then
generated cloud masks for these images by hand in
order to quantitatively evaluate the performance of
our algorithms.

Comparative Analysis

(e) Random forest.

(f) U-Net.

Figure 10: Comparison of the output cloud
mask from each method on cloudy off-nadir
white-balanced sample input.

Figure [I0] Figure [II} and Figure [12] show a compar-
ison of the segmentation maps from every method

on a white balanced inputs. Figure [10] and Figure
show the results on cloudy samples, and Figure
shows outputs from an “easy” sample, as the clouds
look distinct from the background and an ideal single-
dimensional classifier such as k-means segmentation
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(d) K-Means.
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(e) Random forest.

(f) U-Net.

Figure 11: Comparison of the output cloud
mask from each method on cloudy white-
balanced sample input.

can segment them easily. Insufficient samples were
taken to draw conclusions about dataset-wide met-
rics, so these extreme samples were picked to compare
each method against.

Qualitatively, it can be observed that the U-Net
performs the best overall, with the other methods
failing to segment a significant portion of the clouds
in the image. Seams can be seen in the U-Net output
based on where images are spliced back together after
being processed in individual patches. Table 4| shows
a comparison of the runtimes of each of the models.
While the U-Net is much more accurate overall, its
runtime is unfortunately much higher than those of
the other two methods, motivating the use of the Al
accelerator SoC on BeaverCube-2. Additionally, the
U-Net output is limited to 512 px in width and height
due to an algorithm design decision with respect to
patching dimensions. For this reason, comparisons

(e) Random forest.

(f) U-Net.

Figure 12: Comparison of the output cloud
mask from each method on high contrast
white-balanced sample input over ocean.
Mask is annotated up to 512 px width and
height to match U-Net output.

in all metrics are made on 512 px crops of all the
images.

The evaluated metrics are:

S [TP + TN]

A = ’
ceuracy = [TP + TN + FP + FN] ®)
e X TP
Sensitivity = Recall = S [TP + FN] )
X TN
ficity = ——
Specificity > [TN + FP] (5)

Sensitivity+Specificity
2

(6)

Balanced Accuracy =
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.. X TP
Precision = m (7)

X TP

F, Score =
LT SITP + 1[FP + FN)]

(8)

where TP are true positives, TN are true nega-
tives, FP are false positives, and FN are false nega-
tives.

Full results for each method are shown in Tables
[2] and [3] All methods show very high specificity and
comparatively lower sensitivity, which leads to many
false negatives in segmented images.

The U-Net model performs best over all images, with
balanced accuracies ranging from 77%-89%, and an
F1 score of 0.69 to 0.87. In particular, the U-Net
retains a high F; scores over cloudy samples, which
is the situation in which it has the most value. The k-
means model performs best overall in the easy sample
as shown in Table [3 as the two classes are equally
distributed in the data, and the ideal separator can
be easily found. In contrast, the luminosity-based
classifier, which can be thought of as an instance of
k-means with a fixed separator, performs worse on
the easy sample as it optimizes for the ideal separator
over the training dataset rather than that over the
sample.

Resource Utilization

The CPU usage on both cores of the SEPP are shown
in Figures[13] [[4] and the memory required during
the experiment run is shown in Figure

Figures show most of the CPU usage is on
CPU-0, with a small amount of usage on CPU-1.
This shows that the experiment is multi threaded,
and gains in performance can be made with efficient
parallelization. The algorithms presented in this
paper are trivially parallelizable, and there are many
avenues for pursuign increased performance.

Figure [15] shows memory usage during the epxeri-
ment. Overall, peak memory usage for the luminosity
thresholding and k-means methods are very small
due to the only requirement being to store the image
in memory, and cannot be seen clearly in the plot.
On the otherh and, the U-Net and random forest
methods can clearly be seen as pleateaus of memory
usage one after each other. The U-net uses 90 MB
of memory at its peak, whereas the random forest
uses 170 MB of memory at its peak. The increased
memory usage of random forest is due to the fact
that it is a data driven method and does not generate

a model, but uses an ensemble of branches of the
original training data.

Figure [T6] shows the current draw during the ex-
periment. At peak usage, the experiment drew an
increase of 140 mA of current compared to the base-
line current draw. The temperature rise generated
from the power draw is shown in Figure [I7] resulting
in a peak temperature rise of 1.8 °C for the second
temperature sensor on the SEPP.

1.0
0.8
8 0.6 1
3 . wait
3 mmm user
2 04 B system
© B steal
0.2 m softirq
B nice
[ interrupt

0.0
0 100 200 300 400 500 600

Time [s]

Figure 13: CPU-0 usage during SEPP run of
classifying a single image.

1.0

0.8
0.6
I wait
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204 system
@]
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o
[N

0 100 200 300 400 500 600
Time [s]

Figure 14: CPU-1 usage during SEPP run of
classifying a single image.

CONCLUSION

Running our algorithms onboard OPS-SAT signifi-
cantly helped us de-risk our algorithms in preparation
of on-orbit usage in BeaverCube-2. The process al-
lowed us to accurately gauge the advantages and
disadvantages of all models. In particular, a large
tradeoff in model size and processing time is observed
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Table 1: Metrics evaluated over cloudy, off-nadir sample in Figure

Method Accuracy Balanced Sensitivity Specificity Precision Recall F; Score
Accuracy
Luminosity 0.22 0.56 0.12 1.00 1.00 0.12 0.21
K-Means 0.40 0.66 0.32 1.00 1.00 0.32 0.49
Random Forest 0.39 0.66 0.31 1.00 1.00 0.31 0.48
U-Net 0.62 0.78 0.57 1.00 1.00 0.57 0.73
Table 2: Metrics evaluated over cloudy sample in Figure
Balanced e s i e . .
Method Accuracy Sensitivity Specificity Precision Recall F; Score
Accuracy
Luminosity 0.60 0.78 0.57 1.00 1.00 0.57 0.73
K-Means 0.51 0.74 0.47 1.00 1.00 0.47 0.64
Random Forest 0.64 0.80 0.60 1.00 1.00 0.60 0.75
U-Net 0.79 0.89 0.77 1.00 1.00 0.77 0.87
Table 3: Metrics evaluated over easy sample in Figure
Balanced e co s -
Method Accuracy Sensitivity Specificity Precision Recall F; Score
Accuracy
Luminosity 0.70 0.54 0.07 1.00 1.00 0.07 0.13
K-Means 0.89 0.84 0.68 1.00 0.99 0.68 0.81
Random Forest 0.80 0.69 0.38 1.00 1.00 0.38 0.55
U-Net 0.85 0.77 0.54 1.00 0.99 0.54 0.69
Table 4: Run time of all tested methods.
400
Luminosity 2s E 300
K-Means 3s >
Random Forest 1m44s é 200
U-Net 7m13s ‘g
s
100 e S e E—

B slab_recl B used B cached
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The only model that performs accurately enough
in scenes with complete cloud cover is the U-Net;
however, it has a runtime of over seven minutes on
the SEPP. The simpler statistical models such as
the k-means clustering perform the worst in these
samples as they can only look at differences within
the sample, and cannot accurately segment samples
where one class dominates the image. While the
model takes over seven minutes to run on the SEPP,
the AI accelerator SoC on BeaverCube-2 is highly
customizable, and so we expect that we can achieve
a significant speedup by adapting it to efficiently run

Figure 15: Memory usage during SEPP run
of classifying a single image.

our U-Net.

Additionally, deployment on OPS-SAT helped to
identify clear parts of the computer vision pipeline
that were missing, in particular white balancing. The
models can now be ported to our Al accelerator SoC.
Our luminosity thresholding model and white bal-
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Figure 16: Current provided by both power
distribution units (PDUs) on the SEPP during
experiment operation.
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Figure 17: Temperature on two thermal sen-
sors on SEPP during experiment operation.

ancing module are written in vanilla C++ and are
easily transferable. However, we expect some chal-
lenges adapting our more complex models, particu-
larly the U-Net, to take full advantage of the efficient
parallelization offered by the architecture of our Al
accelerator SoC.

FUTURE WORK

In anticipation of BeaverCube-2’s launch in 2023, we
plan to continue improving the accuracy of our cloud
segmentation algorithms while also working to port
our models to BeaverCube-2’s hardware.

Model Improvements

Although our U-Net model is translationally
equivariant, it is not rotationally equivariant; its
feature maps are not equivariant to rotations of

a cloud or the whole image about the axis of the
spacecraft’s camera. We are currently developing
an SFE(2)-equivariant steerable CNN, which will
be equivariant to cloud and camera rotations!#*
Rotationally equivariant steerable CNNs require
fewer parameters than traditional CNNs and gener-
alize better over orientation for rotation-equivariant
classification tasks#® As such, we expect that our
SE(2)-equivariant steerable CNN will outperform
our U-Net model in generalizing from our limited
training dataset and will ultimately classify clouds
more accurately than the U-Net.

Rotational equivariance achieved through steerable
filter CNNs has already led to improvements in
segmenting medical imagery?8 We expect that a
rotationally equivariant model will better harness
orbital geometry and symmetry and improve the
consistency and accuracy of our models.

Runtime performance of our models can be improved
by tailoring the models to OPS-SAT’s available hard-
ware. OPS-SAT has an FPGA component that can
be used for hardware acceleration of models, but
usage was outside the scope of this work. Other
experiments on OPS-SAT have used the FPGA to
improve the performance of cloud segmentation algo-
rithms 2 Additionally, all of the methods presented
are trivially parallelizable and could utilize both of
the cores of the SEPP CPU resulting in significant
performance improvements.

Deployment to BeaverCube-2

Our models are designed to run on OPS-SAT’s SEPP,
but BeaverCube-2 uses a different AT Computational
Accelerator SoC. As a result, we will need to make
some changes to our model implementations in
order to best harness BeaverCube-2’s hardware. In
particular, code for luminosity thresholding and
random forest methods will need to be modified
to make use of the additional available hardware
onboard in order to speed up and parallelize the
methods. The U-Net model can be used as is, since a
workflow exists for integration of TensorFlow models
onto the Al accelerator.

We will be installing our initial models on
BeaverCube-2 prior to flight rather than uplinking
them, and so our model binaries can be larger. We
will explore the costs and benefits of training a
random forest model with more than 10 trees, since
for BeaverCube-2 the size of the pre-initialized model
is not subject to uplink size constraints.
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Landsat imagery proved to be a useful analog to
orbital imagery taken on OPS-SAT after white bal-
ancing; however, some improvements can still be
made to better align the weights with the expected
inputs. A few-shot learning method with on-orbit
training could be used to transfer learn weights and
improve model performance. This would be an unsu-
pervised method and transductive transfer learning
techniques would need to be used4”
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